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Fellowship goal:  
autonomous estimates of  particle size 

Motivation 
 
1. Greatly increase coverage of particle size measurements 
(using existing, widely available technology) 
 
2. Connect size with other in situ measurements  
(e.g., export flux). 
 
3. Test satellite size products globally 



Method 
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        Randomly spaced particles moving through a sensor 
volume will create a variable signal 
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Many small particles yield a stable signal 
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Fewer, larger particles yield a more variable signal 
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Really big, rare particles make big, isolated spikes  
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Such spikes can be analyzed separately 
(e.g. sinking aggregates in the twilight zone) 
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Briggs et al. (2011) 



 

Here I focus on the first two cases 
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Here I focus on the first two cases 
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If we assume random distribution of particles and no other 
sources of variance, we obtain this proxy for size: 

More details in Briggs et al. (2013) 
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Chl F 
= mean Chl F 
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Lab validation: Backscattering size proxy  
accurately predicts mean diameters above 10 µm 
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Lab validation: Backscattering size proxy  
accurately predicts mean diameters above 10 µm 
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Controlled conditions: 
• 1 particle type 
• known bbp efficiency 



Field application 
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Showing ship and glider data from the  
2008 North Atlantic Bloom project (NAB08) 

WET Labs 
ECO Puck 

Alkire et al. 2012 
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Phytoplankton size proxy correlates with diatom fraction 
during the North Atlantic spring bloom 

Diatom Carbon /  
Total Phytoplankton Carbon 
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(From ship-based FlowCAM  
imaging and flow cytometer) 

r2 = 0.7 

(from ship in-situ 
chl fluorometer) 
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var(Chl F) 

Chl F 



 

Particle size proxy not yet validated in situ 
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var(bbp) 

bbp 
= mean bbp 

per particle 
particle size 

proxy 
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Lab In situ 



18 

April May June 

0

1

2

3

0

5

x 10
−3

Spring 
Bloom 

Chl (mg m-3) 

bbp (m-1) 

data from 3 gliders 
2-day running mean,  
top 50 m 

 

Glider chl fluorescence and backscattering  
show surface bloom evolution  
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Preliminary data 
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From Satellite 

 

e.g. Ciotti & Bricaud 
(2006), 

 

Mouw & Yoder (2010) 
 

Kostadinov et al. 
(2009), 

Svetlana Milutinović 
(poster on Mon) 
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